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A topological index is a numerical number associated with a graph that 
describes its topology. History traces a long path on the study of topological 
indices. A circulant graph is one of the most comprehensive families, as its 
specializations give some important families like complete graphs, crown 
graphs, rook graphs, complete bipartite graphs, cocktail party graphs, empty 
graphs, etc. The aim of this report is to compute the first and second K 
Banhatti indices of circulant graph. We also compute the first and second K 
hyper Banhatti indices of this family of graph. Moreover, we plot our results 
to see the dependences of the first and second K Banhatti indices and the first 
and second K hyper Banhatti indices on the involved parameters. 
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1. Introduction 

*Chemical graph theory is a branch of graph 
theory in which a chemical compound is represented 
by a simple graph called molecular graph in which 
vertices are atoms of compound and edges are the 
atomic bonds. A graph is connected if there is at least 
one connection between its vertices. Throughout this 
paper, we take G a connected graph. If a graph does 
not contain any loop or multiple edges then it is 
called a network. Between two vertices u and v, the 
distance is the shortest path between them and is 
denoted by 𝑑(𝑢, 𝑣) = 𝑑𝐺(𝑢, 𝑣)  in graph G. For a 
vertex v of G the “degree” 𝑑𝑣 is number of vertices 
attached with it. The edge connecting the vertices u 
and v will be denoted by uv. Let 𝑑𝐺(𝑒) denote the 
degree of an edge e in G, which is defined by  𝑑𝐺(𝑒) =
 𝑑𝐺(𝑢) + 𝑑𝐺(𝑣) − 2 with 𝑒 =  𝑢𝑣. The degree and 
valence in chemistry are closely related to each 
other. We refer the book (West, 2001) for more 
details. Nowadays, another emerging field is 
Cheminformatics, which helps to predict biological 
activities with the relationship of Structure-property 
and quantitative structure-activity. Topological 
indices and Physico-chemical properties are used in 
prediction of bioactivity if underlined compounds 
are used in these studies (Rücker and Rücker, 1999; 
Klavžar and Gutman, 1996). 
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A number that describe the topology of a graph is 
called topological index. In 1947, the first and most 
studied topological index was introduced by Wiener 
(1947). More details about this index can be found in 
Dobrynin et al. (2001), Gutman and Polansky (2012), 
and Randic´ index (Randic, 1975).  

Bollobás and Erdös (1998) and Amić et al. (1998), 
works independently defined the generalized 
Randic´ index. This index was studied by both 
mathematicians and chemists (Hu et al., 2005). 

The first and second K-Banhatti indices of G are 
defined as  

 

𝐵1(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑒)]𝑢𝑣𝜖𝐸(𝐺)   
 

and 
 

𝐵2(𝐺) = ∑ [𝑑𝐺(𝑢) × 𝑑𝐺(𝑒)]𝑢𝑣𝜖𝐸(𝐺)   
 

where ue means that the vertex u and edge e are 
incident in G. 

The first and second K-hyper Banhatti indices of 
G are defined as  

 

𝐻𝐵1(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑒)]2
𝑢𝑣𝜖𝐸(𝐺)        

 

and 
 

𝐻𝐵2(𝐺) = ∑ [𝑑𝐺(𝑢) × 𝑑𝐺(𝑒)]2
𝑢𝑣𝜖𝐸(𝐺)   

 

We refer (Kulli et al., 2017) for details about these 
indices. 

Let 𝑛, 𝑚  and 𝑎1, … , 𝑎𝑚 be positive integers, where 

1 ≤ 𝑎𝑖 ≤ [
𝑛

2
] and 𝑎𝑖 ≠ 𝑎𝑗  for all 𝑖 < 𝑗 < 𝑚. An 

undirected graph with the set of vertices 𝑉 =
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{𝑣1, … , 𝑣𝑛} and the set of edges 𝐸 = {𝑣𝑖𝑣𝑖+𝑎𝑗
: 1 ≤ 𝑖 ≤

𝑛, 1 ≤ 𝑗 ≤ 𝑚}, where the indices beign taken modulo 

n,is called the circulant graph, and is denoted by 
𝐶𝑛(𝑎1, … , 𝑎𝑚). 

Circulant graph is among the most 
comprehensive families, as its specializations give 
some important families. Classes of graphs that are 
circulant include the, antiprism graphs, crown 
graphs, cocktail party graphs, rook graphs, complete 
bipartite graphs, Andrásfai graphs, empty graphs, 
complete graphs, Paley graphs of prime order, 
Möbius ladders, torus grid graphs, and prism graphs. 
Because of this somewhat universality, circulant 
graphs have been the subject of much investigation; 
for example, the chromatic index, Connectivity, 
Wiener index, domination number, revised Szeged 
spectrum, Multi-level and antipodal labeling, M 
polynomial and many degree-based topological 
indices for circulant graphs are studied (Voigt and 
Walther, 1991; Boesch, and Tindell, 1984; Zhou, 
2014; Xueliang et al., 2011; Habibi and Ashrafi, 2014; 
Kang et al., 2016; Nazeer et al., 2015; Munir et al., 
2016). For details on topological indices readers are 
refered to Sardar et al. (2017) and Rehman et al. 
(2017). 

In this paper, we compute the first and second K 
Banhatti indices of Circulant Graphs. Moreover we 
ploted our results (Figs. 2- 5) to see the dependence 
of our results on the involved structural parameters. 

2. Main results 

In this section we give our computational results. 
 

Theorem 1. Let G 𝐺 = 𝐶𝑛(𝑎1, 𝑎2, … , 𝑎𝑛)  be Circulant 
graph. Then the first and the second K Banhatti 
indices are 𝑛(6𝑛 − 10) and 𝑛(4𝑛2 − 12𝑛 + 8). 

 
Proof. Let 𝐶𝑛(𝑎1, 𝑎2 … , 𝑎𝑚) where 𝑛 = 3,4, … 𝑛 and 

1 ≤ 𝑎𝑖 ≤ [
𝑛

2
] and 𝑎𝑖 ≠ 𝑎𝑗  when n is even and when 

1 ≤ 𝑎𝑖 ≤ [
𝑛

2
] 𝑎𝑖 < 𝑎𝑗  when n is odd be the circulant 

graph.From the structure of 𝐶𝑛(𝑎1, 𝑎2, … , 𝑎𝑚),we can 
see that there is one partition 𝑉{1} =

{𝑣𝜖𝑉(𝐶𝑛(𝑎1, 𝑎2, … , 𝑎𝑚))|𝑑𝑣 = 𝑛}. It is obvo=ious 

from Fig. 1 that the edge set 
𝐶𝑛(𝑎1, 𝑎2, … , 𝑎𝑚) partitions as follow: 
 
𝐸{𝑛−1,𝑛−1} = {𝑒 = 𝑢𝑣𝜖𝐸(𝐶𝑛(𝑎1, 𝑎2, … , 𝑎𝑚))|𝑑𝑢 = 𝑛 −

1 𝑎𝑛𝑑 𝑑𝑣 = 𝑛 − 1} → |𝐸{𝑛−1,𝑛−1}| = 𝑛  

 
Details of vertices and edges set are given in 

Table 1. 
By definition, we have  

 
𝐵1(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑒)]𝑢𝑣𝜖𝐸(𝐺)   

= ∑ [{𝑑𝐺(𝑢) + 𝑑𝐺(𝑒)} + {𝑑𝐺(𝑢) + 𝑑𝐺(𝑒)}]𝐸(𝑛−1,𝑛−1)
   

= 𝑛[(𝑛 − 1 + 2𝑛 − 4) + (𝑛 − 1 + 2𝑛 − 4)]  
= 𝑛(6𝑛 − 10)  
𝐵2(𝐺) = ∑ [𝑑𝐺(𝑢) × 𝑑𝐺(𝑒)]𝑢𝑣𝜖𝐸(𝐺)   

= ∑ [{𝑑𝐺(𝑢) × 𝑑𝐺(𝑒)} + {𝑑𝐺(𝑢) × 𝑑𝐺(𝑒)}]𝐸(𝑛−1,𝑛−1)
  

= 𝑛[(𝑛 − 1) × (2𝑛 − 4) + (𝑛 − 1) × (2𝑛 − 4)]  
= 𝑛[(2𝑛2 − 6𝑛 + 4) + (2𝑛2 − 6𝑛 + 4)]  
= (4𝑛2 − 12𝑛 + 8)  

 
Table 1: Details of vertices and edges set 

(𝑑𝑢 , 𝑑𝑣) (n-1,n-1) 
Number of edges n 

(𝑑𝐺(𝐺) n-1+n-1-2=2n-4 

 

 
Fig. 1: A circulant graph 

 

 
Fig. 2: Plot of first K Banhatti Index 

 

 
Fig. 3: Plot of second K Banhatti Index 

 

Theorem 2. Let 𝐺 = 𝐶𝑛(𝑎1, 𝑎2, … , 𝑎𝑛)  be the 
circulant graph. Then the first and second K Hyper 
Banhatti indices are  2𝑛(3𝑛 − 5)2 and 2𝑛(2𝑛2 −
5𝑛 + 4). 
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Proof. 
 
𝐻𝐵1(𝐺) = ∑ [𝑑𝐺(𝑢) + 𝑑𝐺(𝑒)]2

𝑢𝑣𝜖𝐸(𝐺)   

= 𝑛[{(𝑛 − 1) + (2𝑛 − 4)2} + {(𝑛 − 1) + (2𝑛 − 4)2}]  
= 𝑛[2{(𝑛 − 1) + (2𝑛 − 4)2}]  
= 2𝑛(3𝑛 − 5)2  

 

 
Fig. 4: Plot of first K-hyper Banhatti Index 

 
𝐻𝐵2(𝐺) = ∑ [𝑑𝐺(𝑢) × 𝑑𝐺(𝑒)]2

𝑢𝑣𝜖𝐸(𝐺)   

= 𝑛[{(𝑛 − 1) × (2𝑛 − 4)2} + {(𝑛 − 1) × (2𝑛 − 4)2}]  
= 𝑛[2{(𝑛 − 1) × (2𝑛 − 4)2}]  
= 2𝑛((2𝑛2 − 5𝑛 + 4))  

 

 
Fig. 5: Plot of second K-hyper Banhatti Index 

3. Conclusion 

In this article, we computed the first and second K 
Banhatti indices and the first and second K hyper 
Banhatti indices of circulant. We plot our results in 
Figs. 2-5. Our results can play a vital role in 
pharmacy. 
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